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Multicomponent reactions enable the synthesis of large molecular libraries from relatively

few inputs. This scalability has led to the broad adoption of these reactions by the phar-

maceutical industry. Here, we employ the four-component Ugi reaction to demonstrate that

multicomponent reactions can provide a basis for large-scale molecular data storage. Using

this combinatorial chemistry we encode more than 1.8 million bits of art historical images,

including a Cubist drawing by Picasso. Digital data is written using robotically synthesized

libraries of Ugi products, and the files are read back using mass spectrometry. We combine

sparse mixture mapping with supervised learning to achieve bit error rates as low as 0.11%

for single reads, without library purification. In addition to improved scaling of non-biological

molecular data storage, these demonstrations offer an information-centric perspective on the

high-throughput synthesis and screening of small-molecule libraries.
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S ignificant advances toward useful molecular-scale data
systems have been made by exploiting DNA1–8 and other
sequence-defined polymers9–11. However, linearly ordered

macromolecules represent only a tiny fraction of the near-
limitless variety of chemistries, which could be used to represent
information. To find alternative examples of molecular infor-
mation systems, one need look no further than the simplest
single-celled organisms, which have evolved to make use of many
complementary forms of chemical information, including loosely
ordered mixtures of small molecules, such as metabolites and
dissolved ions. Similarly, recent demonstrations have stored
digital data not only in DNA4,5,12, but also using short peptides13

and metabolites14.
While macromolecules will continue to be important for

information systems, complementary small-molecule approaches
can offer a number of potential advantages13,15. They do not
require polymerization or enzymatic steps; they can be designed
to resist cellular digestion16 and extreme environmental condi-
tions; and they can be economical to produce. However, previous
demonstrations of non-polymeric molecular data have faced
capacity scaling challenges, which limited their scope to small
files, such as encryption keys17,18.

In this work, we encode millions of bits of data, in the form of
digital images, using mixtures of small molecules. Rather than
representing information in linear molecular sequences, we store
data in locally disordered mixtures of small molecules, which
can be identified by their molecular structures. This approach
may appear comparatively difficult to scale to large amounts
of data since we cannot simply add more subunits, as in the case
of a polymer. We overcome this hurdle by creating large
libraries of unique compounds through automated multi-
component reactions.

We introduce a process to perform the nanoliter-scale synth-
esis and validation of thousands of unique Ugi products per day,
without requiring purification or the use of solid supports. Some
of these compounds are likely novel and have not been experi-
mentally characterized before. To use these Ugi libraries, we have
developed tools that can identify information-bearing molecules
in complex chemical mixtures. By combining high-resolution
mass spectrometry with supervised learning, we show how to use
isotopes, adducts, impurities, and chemical interactions to
improve the identification of information-carrying compounds.
Additionally, we improve on previous demonstrations of non-
genomic data storage by implementing a sparse data encoding
scheme which dramatically reduces error rates. Furthermore, the
techniques used here can be applied to other scalable chemical
libraries.

An overview of the data storage process is provided in Fig. 1,
which depicts the storage of a 0.88 megapixel digital image
derived from a Cubist charcoal drawing of a violin by Pablo
Picasso19. Other datasets are shown in Fig. 6. These images
represent the largest amount of digital data stored in a non-
polymeric molecular form (Supplementary Fig. 9).

Even in these early demonstrations, encoding between 16 and
575 bits of data per position compares favorably to some aspects
of conventional memory devices, in which information is typi-
cally encoded using a single scalar parameter (e.g. charge) per
location, and where electronic noise sources make it impractical
to store more than a few bits per cell20,21. In order to further
improve density, semiconductor memory is increasingly struc-
tured in three dimensions22. While the physical dimensions of
our chemical memory spots are currently much larger than
electronic memory, the concept of storing information in diverse
small-molecule mixtures is valid down to the nanoscale.

In addition to the potential for dense data storage, working
with large numbers of complex chemical mixtures provides

opportunities to learn from information-rich annotated experi-
mental datasets. Just as DNA memory has inspired improvements
in synthesis and sequence alignment23,24, advances in non-
polymeric molecular data systems can lead to insights that may
prove useful for navigating broad small-molecule spaces for drug
discovery, metabolomics, and synthetic biology.

Results
Combinatorial library synthesis. The automated generation of
diverse non-polymeric chemical libraries is challenging because of
the wide variety and complexity of synthetic protocols. To create
scalable small-molecule libraries appropriate for information
storage, we use the multicomponent Ugi reaction25, which
combines four reagents: an amine, an aldehyde or a ketone, a
carboxylic acid, and an isocyanide, into a single product plus
water. The number of unique Ugi products that can be formed
scales with the number of available reagents (Fig. 2a). For
instance, with 10 variations of each reagent, up to 10,000 unique
multicomponent products are possible. The Ugi reaction is par-
ticularly attractive as a one-pot, single-step, room-temperature
reaction26 that has known catalysts27,28, solid supports29–31,
accelerated conditions32,33, and multi-step extensions34. Ugi
reactions have been previously used as secret molecular encryp-
tion keys17, and to create sequence-defined macromolecules35.
Here, however, our goal is to encode millions of bits of infor-
mation in mixtures of small molecules, requiring that we find
efficient strategies to synthesize as many unique products as
possible.

To this end, we have developed automated protocols for the
high throughput synthesis of 1500 Ugi products at a time
(Fig. 2b). We begin with a well plate containing five amines, five
aldehydes, 12 carboxylic acids, and five isocyanides, and use an
acoustic fluid handler (Echo 550, Labcyte) to enumerate all 1500
possible combinations of the four components into a 1536-well
plate. After reacting, the wells are diluted to a final volume of
4 μL. Since the minimum transfer volume of the fluid handler is
2.5 nL, each library well can be dispensed more than a thousand
times before it is depleted.

We initially assumed that it would be necessary to purify each
library component, perhaps using solid supports, but were
pleasantly surprised to find that with appropriate analysis
strategies our molecular datasets could be accurately read using
raw reaction solutions. Forgoing purification allowed us to
streamline the experimental protocols and minimize labor and
material cost, such that over the course of this work we were able
to synthesize more than 10,000 compounds.

To validate the library, 20 nL from each well was analyzed with
mass spectrometry (SolariX 7T, Bruker)36,37, in matrix-assisted
laser desorption ionization (MALDI) mode38. The Ugi product
monoisotopic masses (M) are mostly between 500 and 700 Da,
but we frequently observe sodiated (M+Na) and potassiated
(M+ K) adducts (Fig. 3b). We analyzed the library spectra
for sodiated product peaks, and found that more than 90%
(1346/1500) of the products had significant signal ( SNR > 31:44).
Additional details about library synthesis and validation are
provided in the Methods and Supplementary Figs. 1–4.

Writing data as chemical mixtures. The composition of a che-
mical sample can represent abstract information, whether the
sample consists of a single compound selected from a defined
chemical space17, a pool of sequence-controlled polymers4,13, or a
mixture of unique compounds15. With small molecule libraries,
the most direct way to encode information is to use the presence
or absence of each library element in a sample to represent one bit
of data14,39. Thus, our 1500 compound Ugi libraries could encode
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up to 1500 bits of information per mixture. However, using the
full library in this way would strain our current experimental
system, requiring large mixture volumes and low analyte con-
centrations. Thus when using this simple encoding scheme we
often prefer to use a reduced subset of library components.

Figure 4 shows a 48,841-pixel binary image of the Egyptian god
Anubis, which we encoded across 1527 independent mixtures
using a 32-product library subset. In this case, the binary image
data is first rearranged as a 1527 × 32 matrix, where each row of
the matrix corresponds to one location on a data plate and each
column corresponds to one library component. At each position,
if a library element is meant to be included, we instruct our
acoustic liquid handler to dispense a 2.5 nL droplet from its
library well to the data plate. If it is meant to be excluded, no
transfer is performed. The data is assembled on a standard
MALDI target plate, forming a unique data mixture at each
position. Finally, MALDI matrix is added to the mixtures, which
are then dried, leaving behind crystalline spots, which can be
stored and later read back using mass spectrometry.

We often create up to 1536 unique mixtures per data plate, and
the storage capacity scales with the number of library compounds
used. To encode the 0.88 megapixel image of a Picasso drawing
shown in Fig. 1, we used 575 unique compounds. Additional
storage experiments are summarized in Fig. 6 and Supplementary
Fig. 7. These chemical datasets take several hours to write and
read, are stable for at least 9 months, and can be read more than
100 times (Supplementary Figs. 8 and 12).

Reading data from chemical mixtures. To recover a chemical
dataset, we analyze each mixture with mass spectrometry and
train supervised learning algorithms to identify which library
elements they contain. In the simplest version of this analysis, we
can consider only the sodiated peaks of each Ugi product. If a
peak’s intensity exceeds a threshold, we record the compound as
present (“1”) and otherwise declare it as absent (“0”). For
example, the spectrum shown in Fig. 4d contains the 1st, 2nd, 5th,
12th, 14th, and 17th compounds from a 32-compound sub-
library, and thus this mixture encodes the following four bytes:
11001000 00010100 10000000 00000000.

Using only sodiated product peaks, the Anubis dataset was
recovered with 97.9% accuracy. At least 30/32 compounds were
correctly assigned in over 95% of mixtures and the residual errors
displayed similar rates of false positives and false negatives
(Fig. 4c). While the majority of compounds achieved <5% error,
we observed an order of magnitude variation in compound
performance (Fig. 4c). We can improve the readout accuracy by
using multiple spectral features to determine the presence of each
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library element. Although it is difficult to assign the precise origin
of every peak in a spectrum (e.g., isotopes, adducts), knowing
their physical origin is not strictly required for data recovery. In
fact, any feature which reliably correlates with the presence of a
compound can be used to improve detection.

In order to exploit these correlated background peaks, we use
supervised learning to train classifiers on library elements using
logisitic or random forest regression. In both cases, we produce a
set of regression models, one per library element, which can
interpret the contents of a data mixture from its mass spectrum.
By applying these machine learning approaches, we have achieved
up to a five-fold reduction in error rates (Fig. 5).

In addition to improving accuracy, treating the readout as a
learning problem has also revealed some interesting and non-
intuitive chemical identifiers (Supplementary Fig. 13). For example,
some classifiers used information about other library elements,
perhaps as a result of competitive ionization. In other cases,
compounds were found to form complexes with residual starting
reagents, which could have arisen during ionization or during

synthesis. Moreover, by learning these difficult-to-anticipate
interactions, multi-peak detection can allow us to identify multiple
library elements with the same monoisotopic mass.

Improving accuracy with sparse data-mixture maps. For the
Picasso drawing (Fig. 1) and Anubis image (Fig. 4), each bit
of data was independently mapped onto the presence or absence
of a single compound in a single mixture. While conceptually
straightforward, this mapping limits the design parameters
available to optimize experimental throughput and accuracy. For
example, it is vulnerable to errors if single chemical components
are improperly identified, and it implies that increasing storage
capacity per spot requires both larger mixtures and larger
libraries.

In Fig. 5, we explore an alternate encoding scheme, in which a
16-bit block of data is mapped to an entire mixture, instead of
mapping each bit independently. This approach allows us to tune
the complexity of the mixtures separately from the library size.
Here we use a library subset of 512 compounds, but constrain
exactly 32 compounds to be present in each mixture. In theory,

there are
512
32

� �
� 2169 such combinations. However, only 216

states are needed to represent all possible values of the 16-bit data.
This sparse mapping implies that the vast majority of possible
mixtures should never be observed. As such, when errors do
occur, data can be rounded to the nearest valid mixture,
providing some degree of fault tolerance. In this example, the
minimum Hamming distance between any two valid mixtures is
36, meaning that perfect recovery of the encoded data can be
guaranteed even when up to 17 of the 512 compounds (3.3%) are
incorrectly classified. To test this, we performed a series of
simulations where a 1600-bit data vector was encoded into 100
chemical mixtures. The virtual mixtures were symmetrically
corrupted, at various error rates, and then decoded (Fig. 5b). Even
with raw error rates several times larger than the guaranteed
threshold, the vast majority of errors could still be corrected.

Using this sparse encoding, we wrote a 24,336-pixel digital
image derived from a 16th century German illustration of angels
seated at a table40. Looking only for the sodiated product peaks,
we correctly classified 389 of the 512 library components, and
after rounding to the nearest valid mixture, the original data was
recovered with 96.67% accuracy (Fig. 5c). Training a logistic
regression model to perform multi-peak detection resulted in a 5-
fold reduction in raw compound errors (Fig. 5d) and a 30-fold
reduction in decoded data errors, yielding a final accuracy of
99.89% (Fig. 5e).

Several mapping and detection schemes were tested in this
work, and the results summarized in Fig. 6 highlight key trade-
offs between the different approaches. The largest file was stored
using direct mapping, since it provides a direct scaling of data
capacity with library size. In contrast, the lowest error rates were
achieved with sparse mapping and multi-peak detection.

Discussion
In this study, we have introduced chemical information repre-
sentations based on mixtures of multicomponent molecules. We
can view this as an effort to store information in a superset of the
molecular space available to biological systems, where synthetic
chemistry is not held to the same environmental and energetic
constraints as living cells. The demonstrations presented here
are already six times larger than the information capacity of
the smallest known genome41, and although it is difficult to
quantify exactly how much information is represented in living
systems, it is interesting to think about how engineered chemical
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information systems could similarly take advantage of the inter-
play between macromolecules and small molecules.

By introducing automated synthesis and analysis approaches
for multicomponent Ugi products, we produced the largest small-
molecule digital information representations described to date.
We showed that by using sparse data-to-mixture mapping and
applying supervised learning to mass spectrometry data, we can
tolerate impurities, improve accuracy, and produce a workflow
that readily generalizes to other classes of small molecules.
We previously demonstrated data storage using a library of
common metabolites14, which could also benefit from the
improved encoding and analysis strategies developed here.
However, metabolite memory is more challenging to scale and
perhaps more suitable for transient memory or chemical com-
putation. Ugi products, on the other hand, offer combinatorial
scaling, excellent stability, and comparatively uniform chemical
properties.

In total, we stored 1.8 million bits of data in Ugi molecules,
including more than 0.8 million bits on a single plate (Fig. 6).
This is still very far from theoretical capacity limits, and there are
many parameters that can be further optimized, including library
size, plate spot density, and mixture complexity. With incre-
mental improvements in these areas, we could reach several
megabytes per plate or more, using largely the same experimental
setup. Introducing photolithography or advanced printing could
further improve the spatial density and data capacity of a plate by
several orders of magnitude. We selected steel plates for their

compatibility with available instruments, but future imple-
mentations could utilize flexible substrates or reels, or embed
chemical information onto the surfaces of three-dimensional
objects. MALDI imaging can achieve resolutions finer than
10 microns42, and although reading larger chemical datasets may
require different coding strategies, we have not yet approached
the information capacity of our readout.

The sensitivity of MALDI mass spectrometry is limited by the
presence of background ions, such as matrix adducts and impu-
rities43. With adjustments to ionization, trapping, and excitation,
this chemical noise can be mitigated, enabling attomole limits of
detection44,45. In our current demonstrations, we estimate
the amount of Ugi product ionized per read to be on the order of
10 femtomoles (Supplementary Fig. 12), offering room for future
improvement.

There are also other interesting avenues to explore beyond
simple capacity improvements. Our sparse mixture mapping
(Fig. 5) can be considered a coarse version of block coding, and
there would be benefits to exploring more efficient coding
schemes for digital error correction. Alternatively, one could
leverage sparsity for enhanced information density, and represent
many bits per small molecule present. The experimental workflow
used here has similarities with early-stage pharmaceutical pipe-
lines46, and it would be exciting to consider how error correction
and the correlated statistics of encoded mixtures could be applied
to drug discovery and medical applications.

By automating the Ugi reaction, we found that we could syn-
thesize thousands of multicomponent compounds per day using
low cost reagents and with minimal manual sample preparation.
The yield and quality of the Ugi reactions supported decoding
hundreds of bits of data per mixture without any purification,
which is partly a result of the fact that here we are interested in
the information carried by the unique fingerprint of each library
element rather than individual chemical structures. One minor
reaction adjustment that we found helpful was to limit the
amount of isocyanide to 80% of the other reagents, which seemed
to reduce side product formation.

Our ability to apply supervised learning to chemical informa-
tion recovery stems from the availability of labeled training data,
and a willingness to tackle complex mixtures. To utilize the
potential of even larger molecular libraries, other approaches may
be required. Recent studies have explored the use of autonomous
systems for the exploration of chemical spaces47, which pairs well
with the idea of mapping chemical mixtures to abstract infor-
mation. Screening combinatorial libraries in bulk rather than one
at a time is already established in some areas of molecular biol-
ogy, such as aptamer design48. Extending these information-
centric philosophies to more subtle molecular properties and
emergent chemical reaction networks may prove particularly
fruitful.

Methods
Materials and reagents. The solvent dimethyl sulfoxide (DMSO, anhydrous,
�99.9%, MilliporeSigma) was used to prepare all solutions in the library and data
plates. Analytical grade α-cyano-4-hydroxycinnamic acid (HCCA, �99.0%, Milli-
poreSigma) was used as the matrix material for all MALDI samples. The library
of 1500 Ugi products was constructed with the following five amines: benzylamine,
4-methylbenzylamine, p-methoxybenzylamine, 4-chlorobenzylamine, 4-tertbu-
tylbenzylamine; five aldehydes: cyclohexanecarboxaldehyde, 3-cyclohexylpropanal,
valeradlehyde, isovaleraldehyde, cyclopentanecarboxaldehyde; 12 carboxylic
acids: Boc-glycine, Boc-proline, Boc-N-methyl-L-valine, Boc-L-asparagine, Boc-L-
beta-homoleucine, Boc-L-methionine, Boc-L-beta-homoglutamine, Boc-L-beta-
homo-methionine, Boc-L-phenylalanine, Boc-N-alpha-N-epsilon-formyl-L-lysine,
Boc-N-methyl-L-phenylalanine, Boc-O-methyl-L-tyrosine; and five isocyanides:
cyclohexyl isocyanide, ethyl isocyanoacetate, benzyl isocyanide, 2-naphthyl iso-
cyanide, methyl isocyanoacetate. These compounds were obtained at synthesis
grade or higher and used as received from their vendors (Chem-Impex for the
carboxylic acids and MilliporeSigma for the others). Further details about the
reagents can be found in Supplementary Fig. 1.
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Museum of Art (Anubis52, Dimna53, Angels40) and19 the ©Estate of Pablo
Picasso/Artists Rights Society (ARS), New York (Violin19).
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Library preparation. Each reagent was dissolved in DMSO to a concentration of
500 mM and placed into a 384-well plate. Using an acoustic fluid handler, we
dispensed the reagents, 200 nL per inclusion, into a 1536-well plate to enumerate
all possible four-component Ugi reactions. The array of reagent mixtures was left
to react at room temperature for 1–2 days. After reacting, DMSO was added to
each library well to reach a final volume of 4 μL.

Mass spectrometry. Mass spectra were acquired with a Fourier transform ion
cyclotron resonance (FT-ICR) mass spectrometer in positive ion mode. Samples
were crystallized in matrix (Supplementary Fig. 17), using an ~100:1 ratio of matrix
to Ugi product. Samples were ionized using matrix-assisted laser desorption
ionization (MALDI). Spectra produced by FT-ICR are particularly high resolution,
often reaching peak widths of 0.001 Da or smaller. To ensure the accuracy of peak
assignment, a mass calibration is performed before each run using sodium tri-
fluoroacetate as a reference49 (Supplementary Fig. 10). We typically acquire spectra
for 1.5 s, which results in a resolving power of 1:3 ´ 105 at 600 Da (Supplementary
Fig. 15). The instrument serially addresses each crystallized spot (Supplementary
Fig. 11), and takes about 4 h to record all 1,536 spots on a plate. Each measurement
is made by ionizing a portion of a sample with a laser configured to take 500 shots
at 1000 Hz, over a scan area of 500–900 μm, with medium focus, and ×4 averaging.
We convert the raw data files from the instrument into a custom HDF5 file, for
more efficient querying and ease of access. To normalize signals across measure-
ments, we often convert the raw intensity values of a spectrum to signal-to-noise
ratios (SNR) according to the following shift-and-scale relation:
SNR ¼ I � μð Þ=σ, where I is an intensity and μ and σ are the mean and standard
deviation of the spectrum’s background (see Supplement).

Library validation. To identify successful reactions, a small volume (20 nL) from
each library well was spotted to a unique location on a stainless steel plate (78mm ´
120mm) along with matrix (20 nL of 176.2 mM HCCA in DMSO). The plated
samples were allowed to dry overnight (�10 h) into round crystals (�800 μm in
diameter), before analysis via mass spectrometry. In the resulting mass spectra, we
looked for peaks corresponding to expected Ugi product masses, and used peak
height as a coarse measure of reaction yield. Since the Ugi products have similar
ionization profiles, we performed a global statistical analysis of the library spectra,
using the SNR of their sodiated peaks. A common threshold (τ) was found using
receiver operator characteristic (ROC) curve analysis50. To construct the ROC curve,
we look for the sodiated product peaks across all reaction wells, apply a given SNR
threshold to assess the presence or absense of these peaks, tally detected library peaks
to estimate the true positive (TPR) and false positive (FPR) rates, and repeat this
process for all candidate thresholds. Since there should be exactly one product per
well, if the expected product is detected, it is counted as a true positive (TP), and if
not, then it is marked as a false negative (FN). Similarly, if other products are
detected in the well, they are counted as false positives (FP) and otherwise as true
negatives (TN). The products with masses that overlap with that of the expected
product are counted as TPs or FNs. Error rates can be calculated as TPR ¼
TP=ðTPþ FN Þ and FPR ¼ FP=ðFPþ TN Þ, and used to find an optimal SNR
threshold, by minimizing the distance to the (0,1)-corner:

ð0� FPRðSNRÞÞ2 þ ð1� TPRðSNRÞÞ2� �1=2
. The Ugi products whose SNR exceeds

this threshold ( SNR � τ) are declared present.

Data plate preparation. First, a digital file is converted into a one-dimensional
binary vector. This vector is then encoded, either with a direct or sparse mapping,
into an M ´N compound-presence matrix, where M is the number of compounds
to be used, and N is the number of independent mixtures to be made. The value of
element pmn in this matrix indicates the presence (“1”) or absence (“0”) of the mth

compound in the nth mixture. To physically generate the mixtures, 2.5 nL droplets
are transferred from the 1536-well library plate to their appropriate locations on a
MALDI plate. Finally, 30 nL of matrix solution (176.2 mM HCCA in DMSO) is
added to each data mixture spot. The overall time to write a data plate ranged from
0.3 to 7.9 h, varying with the encoding scheme and file size (Supplementary Figs. 6
and 7). Once all transfers are complete, the data plate is left to dry in a fume hood
overnight or a vacuum chamber for about 2 h. The resulting dried mixture spots
are typically 1 mm in diameter. Currently, the number of compounds that can be
included in each mixture is limited by the layout of samples on a MALDI plate. For
a 1536-well grid, spots can contain up to 200 nL of solution before they begin to
merge with adjacent samples (Supplementary Fig. 14). For more complex samples,
mixing would have to be done in an intermediate well plate.

Data plate analysis. During plate preparation, the matrix solution is spiked with a
reference Ugi molecule (Supplementary Fig. 5) which is used to calibrate for small
offsets in the recorded masses. After offset calibration, raw mass spectra are
resampled to a common m/z grid in order to construct a single analysis-ready
matrix containing the mass spectra of all spots on a plate.

For single peak detection, the sodiated adduct intensities for a product are
simply one row in the spectral matrix, and this vector can be thresholded to
determine, which mixtures contain the compound. The detection threshold for
each compound was found using ROC analysis of labeled training data, as

previously described for library validation. Recovering the data file from the
presence matrix depends on the encoding method. For direct mapping, the matrix
is simply reshaped to obtain the stored data. For sparse mappings, each matrix row
was matched to the nearest valid key and converted to the corresponding binary
data value.

For multi-peak detection, a similar procedure was followed, except that the
presence matrix was found by applying a regression model trained to identify
each compound based on multiple spectral features. To reduce computational
overhead, instead of building the models on the entire mass spectra matrix,
masses whose average intensities were close to the noise floor were discarded,
reducing the feature space to <1% of its original size, from four million initial
points to at most 20,000 candidate masses. For logistic regression, these features
were further refined based on AUROC scores. This additional filtering was not
needed for random forest regression since it automatically performs feature
selection. The Python library Scikit-learn51 was used to construct a regression
model for each compound. Logistic regressions were configured to use 64 spectral
peaks, while random forest regressions were configured to use 300 trees of
unlimited depth and at most 20,000 spectral features. The regression models used
a 30/70 train/test split.

Data availability
The datasets from this study are available from the authors on reasonable request.

Code availability
The software used in this study is based on code available from the Metabolomics
Workbench data repository (study ST001173), and is available from the authors on
reasonable request.
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