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Abstract—Computation that can exploit the Avogadrian num-
bers of molecules in heterogeneous solutions, and the even larger
number of potential interactions among these molecules, is a
tantalizing dream. However, the lack of precise specificity/control
of chemical interactions can be at odds with the dream. In this
paper, we show how relatively simple chemistry can be used
to produce a ubiquitous computational primitive (the multiply-
accumulate or MAC operation) that forms the basis for a
single-layer neural network called a perceptron. A chemical
perceptron can be realized using distinct mixtures as inputs
and different reagents as operations to produce the results of
the perceptron MAC operation, that can be read out perhaps
using simple indicators such as pH or fluorescence. With a
moderately large chemical library, the number of potential inputs
can be Avogadrian so that reagent addition implicitly performs
a concomitantly large number of MAC operations in parallel.

I. INTRODUCTION

Computation that can exploit the Avogadrian numbers of
heterogeneous molecules present even in small volumes of
chemical mixtures and the even larger number of potentially
unique interactions among these molecules in gaseous and/or
liquid states, is a tantalizing dream. In principle, molecules
hold the promise of realizing levels of parallelism orders of
magnitude beyond what is currently achievable in silico, while
requiring substantially less energy [1]. They also lie at the
heart of the unmistakably powerful biochemical computing
that our bodies perform everyday. However, the lack of precise
specificity/control over chemical interactions in a mixture can
be at odds with this dream. Molecules in solution can react
in a stochastic fashion largely dictated by diffusion that is
highly dependent not only upon ambient conditions, but also
upon what other molecules and reagents are present. It is this
inherent non-linearity that has established chemistry as the
challenging field that is over the past few centuries, yet makes
chemical computation so tantalizing. In this paper, we show
how relatively simple chemistry can be used to produce a
ubiquitous computational primitive (the multiply-accumulate
or MAC operation) that forms the basis for a single-layer
neural network called a perceptron. Our perceptron is produced
using distinct chemical mixtures whose inclusion/exclusion
in a pool is controlled by a binary input vector, applying
different reagents/processes to the pooled inputs, and reading
the result through simple indicators such acidity, alkalinity, or
fluorescence emission. And while not Avogadrian, the number
of potential inputs can be very large and reagent addition

Fig. 1. Perceptron classifier with inputs xj and weights wj , j = 1, 2, · · · , J
and output nonlinearity φ().

implicitly performs a concomitantly large number of multiply
accumulate operations in parallel.

The organization of this paper is as as follows. We will first
review perceptron structure in Section II and briefly describe
the structure of the individual small molecules upon which
the scheme is built in Section III. Then in Section IV, based
upon the presence/absence of small molecule mixtures as
inputs, we will describe how, for a given desired perceptron
weight set, mixture compositions can be found such that
their collective interaction with different reagents produces the
desired perceptrons and the desired indicator outputs.

II. THE PERCEPTRON

Our overarching goal is to devise computational systems
that can perform classification and signal processing on mas-
sive data sets by exploiting the inherent parallelism of solution
phase chemical reactions. Our target architecture is the per-
ceptron, which is a flexible and universal pattern classification
structure, and a key element of neural network systems that
handle large data sets [2]. The “perceptron," consists of a sin-
gle multiply-accumulate primitive, followed by a nonlinearity,
as illustrated in FIGURE 1. More complex neural networks
can be built from multiple layers of perceptrons.

Mathematically, a perceptron is simply a dot product be-
tween a real “input" vector x and a real “weight" vector w,
both of dimension J , followed by a nonlinearity φ(w · x)
where φ(·) is a “sigmoidal," nondecreasing thresholding func-
tion with a rapid transition between two discrete levels. The
perceptron is a binary classifier which separates inputs into two
groups. For example, a perceptron can be designed to classify
an MNIST handwritten digit image into one of two groups
such as "zero" vs. "not a zero" [3]. By controlling the values of
the weights, one can change the classification operation. One
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advantage of using perceptron-based computation is that the
weights can be flexibly designed; another advantage is that the
computations are error tolerant. For instance, the precision of
the weights can be flexibly set in floating point, fixed point, or
even binary (−1|1 or 0|1), but nevertheless, the classification
outcome can still be accurate because the training process
can compensate for the reduction in precision and “heal" the
perceptron [2], [4]–[7]. Such flexibility and error tolerance are
crucial given the underlying discrete nature of the input-coding
we propose and the stochastic nature of chemical reactions.

III. PERCEPTRONS THROUGH DIFFERENTIAL REACTIVITY

Over billions of years, biological systems have evolved
“lock and key" receptor/ligand complexes, in which a given
ligand interacts with a specific receptor structure, often with
extremely high specificity. Impressive examples include re-
striction enzymes that attach to a specific sequence of bases
in DNA and ion channels that select for a single ionic species
[8].

In contrast, de novo design of exquisitely specific reactions
which will select for (each of) one and only one molecule
remains an outstanding challenge for synthetic chemistry [9],
[10]. Thus, the notion of selecting individual molecules from a
mixture to react without affecting other molecules is untenable
– which in turn means the notion of mapping individual
molecules to inputs in the perceptron model is untenable. So,
developing an approach to realizing perceptrons (and thence
more complex neural networks) which does not depend on
carefully matched ligand/receptor chemistry is necessary.

Thus, instead of using the presence or absence of distinct
molecules as perceptron inputs, we will use distinct mixtures
of molecules as units of input and combine these mixtures as
dictated by the binary input vector x – resulting in a mixture
of mixtures that we call a pool. We then apply some reagent
(or process) to the pool to perform the necessary multiply-
accumulate operations, and follow with threshold detection of
a detectable reaction product to produce the perceptron output.

Our individual molecules will be composed of different “R-
groups” – molecular species with different chemical properties
that can be attached to some chemical backbone [11]. The
number of R-groups comprising a molecule will be some
fixed K, and while it is possible that the chemistry will allow
multiple copies of the same R-group per molecule, we may
invoke restrictions such that a given R-group can appear only
once per molecule. The multiplicity of potential R-groups and
the size of K implies that the number of different molecules
is combinatorial and thus could be very large.

We take as a given that a specific reagent will interact
differently with different R-group types [11]. For example,
suppose reagent Gi reacts with R-group Rn and replaces Rn
with a different detectable R-group (that may be a fluorophore
or have a different acidity, polarity, or charge) with a given
yield. Then, Gi is also assumed to affect other R-groups with
varying degrees of specificity/affinity. If we assume that the
reagent is plentiful and thereby accessible to all molecules in a
mixture given sufficient mixing and/or diffusion, then we can

define an operator Gi(·) where Gi(Rn) = γin ∈ [0, 1] is the
equilibrium proportion of R-groupRn replaced by indicator Ti
under application of reagent Gi. Given N different R-groups,
any given reagent Gi has an associated R-group replacement
“equilibrium/yield vector” γγi defined as

γγi =

 γi1
...

γiN

 .
Now, were it possible to design a reagent Gi that would react
only with R-group Rn, always replacing it completely by Ti,
then γγi = en, the canonical unit vector in <N . However,
such a scenario is unlikely owing to the lack of precise
ligand/receptor specificity between R-groups and reagents, so
the replacement vector associated with reagent Gi will contain
an assortment of non-negative numbers between zero and one.
Further, we will we also admit the possibility that γγ may be
stochastic (with known statistics). Our γγ is defined assuming
that all of the related reactions have achieved equilibrium:
while γγ will vary with time as reactions proceed, we only
consider final γγ values here.

Now, consider molecules, {µm}, composed of K R-groups
Rm1

,Rm2
, · · · ,RmK

. We can represent each molecule µm
as an integer N -vector where nonzero entries in position `
indicate the number of R` contained in µm. For molecules
constructed of K R-groups, we must have ||µm||1 = K, but
the structure of µm may be further constrained depending
upon how molecules are constructed. For instance, perhaps
a given R-group can appear only once per molecule so that
µm is always a binary vector. Further, we might also have
K distinct classes of R-groups where each class may be
represented only once. However, for now we simply assume
the entries are non-negative integers that sum to K. We can
then define an N ×M molecule matrix, U, as

U =
[
µ1 µ2 · · · µM

]
(1)

which contains our “universe” of M distinguishable
molecules, m1, · · · ,mM .

Now, let each component of a particular group of molecular
mixtures, {Mj}, j = 1, · · · , J , be defined by a binary
M -vector θj whose components are 0|1, corresponding to
which molecules are absent|present in Mj (at presumed unit
concentration). We can then define a matrix θ, each column
of which specifies the molecules that comprise input j as

Θ =
[
θ1 θ2 · · · θJ

]
(2)

where J ≤ 2M is the number of inputs to our perceptron. That
is, mixture j is present in the pool if perceptron input xj = 1
and is not present if xj = 0.

Now, since reagents act on R-groups, to obtain the results of
reagent application we must translate Θ into a corresponding
collection of R-group mixtures, {rj}, upon whose components
the γγin can operate. To this end, we define the N × J matrix
R as

R = UΘ (3)
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We note that
R =

[
r1 · · · rJ

]
and

rj =

 rj1
...

rjN


where the integer rjn indicates the number of Rn’s in mixture
j. Since the action of reagent Gi on molecule µm is γγ>i µm, it
is easy to see that application of reagent Gi to a given mixture
Mj results in non-negative indicator “weight”

wij = γγ
>
i Uθj

Finally, if the presence or absence of Mj in the pool
is defined by the binary variable xj , the indicator amount
produced by applying reagent Gi to the pool is

||Ti|| =
J∑
j=1

wijxj = w>i x = γγ>i UΘx (4)

where

wi =

 wi1
...

wiJ


and each wij ≥ 0. We then have

wi = Θ>U>γγi (5)

We summarize these results as a theorem:
Theorem 1 (Chemical Perceptron): Assuming the presence

or absence of each of an ensemble of molecular mixtures as
binary inputs, xj , the scalar ||Ti|| as given in equation (4)
represents a chemical multiply-accumulate operation on the xj
using weights wij ≥ 0. Applying a threshold operator φ() to
||Ti|| results in the mathematical equivalent of the perceptron
structure shown in FIGURE 1.

Proof: [ Theorem 1] See the mathematical development lead-
ing to the statement of Theorem 1. •

In FIGURE 2, we provide a cartoon representation of the
chemical perceptron described in Theorem 1. We now consider
the appropriate design of input mixtures to realize different
perceptron weight-sets under the action of different reagents.

IV. DESIGNING THE INPUT COMPOSITION, Θ

Assuming R-groups, molecules, and reagents have already
been chosen, we are then presented with at least two mathe-
matical problems:

1) How do we choose input mixture compositions to pro-
duce some desired weight pattern w1?

2) Since the ensemble of input mixture compositions will
represent real data, is it possible to choose a single
input mixture set where application of reagent Gp,
p = 1, 2, · · · , P represent P different perceptrons with
weight sets wp, p = 1, 2, · · · , P ?
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Fig. 2. Representation of a chemical perceptron that can recognize two
patterns (001010 and 10100) corresponding to two different reagents. Pixel
cells are mixtures composed of different molecules m`. Pixels are exposed
according to the inputs, xj , j = 1, 2, · · · , 6, and then “poured” into the
pool. Reagent is added to the pool and reaction proceeds. Green(darker)
represents post-reaction above-threshold indicator detection. (a) Application
of reagent 001010 with input 001010; (b) Application of reagent 101000
with input 001010; (c) Application of reagent 101000 with input 001010;
(c) Application of reagent 101000 with input 101000;

Let weight set, wi, corresponding to application of reagent
Gi be

γγ>i R = γγ>i UΘ =
[
wi1 · · · wiJ

]
= w>i

Now, let
Γ =

[
γγ1 · · · γγP

]
where P is the number of different perceptrons we require of
a given data set corresponding to the set of input mixtures,
M1, j = 1, · · · , J . We then have

Θ>U>Γ = R>Γ =
[

w1 · · · wP

]
≡W (6)

and we must solve for Θ.
However, before considering specific approaches, some use-

ful general observations can be made from the structure of
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equation (6). Notice that if any column of Γ, γγq , is linearly
dependent on another set of columns {γγ`}, there exists a set
of constants {α`} such that

γγq =
∑
`6=q

α`γγ`

By equation (5) we must then have

wq =
∑
`6=q

α`w` (7)

so that at least one of the weight sets that comprises W cannot
be chosen independently from others. We state the implication
of equation (7) as a theorem:

Theorem 2 (Independent Perceptron Limit): The number,
P , of perceptrons that can be independently composed by
choice of Θ is less than or equal to N , the number of R-
groups.

Proof: [ Theorem 2] By equation (7), the number, P , of
independent weight sets wp that can be composed by choice of
Θ is upper-bounded by the number of independent γγ` which is
identically the column rank of Γ. The number of independent
{γγ`} is in turn upper-bounded by the dimension, N , of the
{γγ`} which completes the proof. •

U is fixed and Γ is either a deterministic or random
(with known density) vector. In either case, solution of (or
approximation to) equation (5) can be approached as an
optimization over binary matrices {Θ} using some norm such
as component-wise mean square error between Θ>U>Γ (or
R>Γ) and some target W. It is useful to note that if the
thresholding function φ(·) can be adjusted or if different
thresholding functions φi(·) can be used after application of
reagent Gi then we can choose a set of nonzero constants
{ap}, p = 1, 2, · · ·P to relax equation (5) and obtain

Θ>U>Γ = R>Γ =
[
a1w1 · · · aPwP

]
= WA (8)

where

A =


a1 0 · · · 0

0 a2
. . .

...
...

. . . . . . 0
0 · · · 0 aP

 (9)

If only one threshold function φ(·) can be used, then ap =
a 6= 0, p = 1, 2, · · ·P . Otherwise, the non-zero {ap} can be
chosen freely.

We rewrite equation (8) as

Θ>U>Γ = R>Γ = WA (10)

so that the total mean square error, e2, between WA and its
approximation Θ>U>Γ can be written as

e2 = Trace[
(
Θ>U>Γ−WA

)> (
Θ>U>Γ−WA

)
] (11)

which we can also write as

e2 = Trace[
(
Θ>U>Γ−WA

) (
Θ>U>Γ−WA

)>
] (12)

since Trace[Z>Z] = Trace[ZZ>] for any matrix Z. If we then
define W̃ = WA, the necessary optimization is

dθ = min
Θ,A

Trace[
(
Θ>U>Γ− W̃

)(
Θ>U>Γ− W̃

)>
]

(13)
However, one can also pursue a less constrained optimization
over non-negative R:

dR = min
R,A

Trace[
(
R>Γ− W̃

)(
R>Γ− W̃

)>
] (14)

It is clear that dθ ≥ dR since the possible R are constrained
by the Θ.

V. INPUT COMPOSITION OPTIMIZATION

A. Optimization for Fixed A

We first show that the minimizations equation (14) and
equation (13) are convex in continuous R and Θ, respectively,
for fixed A.

Theorem 3 (dR and dθ convexity in R and Θ): Assume
A fixed. dR and dθ are convex optimizations in continuous
R and Θ, respectively, over convex search spaces. dR and
dΘ are strictly convex with unique solutions iff there are N
linearly independent yield vectors, γγp.

Proof: [ Theorem 3] Let λ ∈ (0, 1). If we set

R = λR1 + (1− λ)R2

convexity of dR requires

Trace[
(
R>Γ− W̃

)(
R>Γ− W̃

)>
]

≤ λTrace[
(
R>1 Γ− W̃

)(
R>1 Γ− W̃

)>
]

+ (1− λ)Trace[
(
R>2 Γ− W̃

)(
R>2 Γ− W̃

)>
]

(15)

for any two different R1 and R2.
Strict convexity further requires equality iff λ = 0 or λ = 1.

Expansion and rearrangement of equation (15) produces the
inequality

−λ(1− λ)Trace[(R1 −R2)
>ΓΓ>(R1 −R2)] ≤ 0 (16)

which is clearly satisfied since Trace[ZZ>] ≥ 0 for any
nonzero real matrix Z. Therefore dR is convex. Furthermore,
dR is strictly convex iff ΓΓ> has rank N so as to preclude
(R1 − R2)

>Γ = 0 for some choice of different R1 and
R2. ΓΓ> has rank N iff ∃N linearly independent γγp which
comprise Γ.

The structure of dθ is identical to that of dR. So, assuming
continuous Θ, the same argument for convexity of dθ applies.

Finally, the rj and θj which comprise R and Θ, respec-
tively, are confined to the positive orthant – a convex search
space for R and Θ. Thus, dR and dθ are convex optimizations
over convex spaces. Strict convexity implies unique solutions,
thus completing the proof. •

Since dR and dθ are convex, efficient numerical methods ex-
ist to find optimizing continuous R∗ and Θ∗. However, feasi-
ble solutions for R∗ and Θ∗ are integer matrices. Nonetheless,
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once R∗ and Θ∗ are identified, the continuity of dR and dθ in
their arguments allow us to examine feasible discrete solutions
within the neighborhoods of R∗ and Θ∗. The quality of these
discrete solutions, essentially quantizations, will depend upon
their coarseness with respect to the metrics’ variation in the
continuous search space. Therefore, we would expect solutions
could be improved through appropriate choice of A.

B. Choosing A

Consider R∗ a continuous solution to equation (14) for
some arbitrary A which produces minimum error

(e∗)2 = Trace[
(
(R∗)

>
Γ− W̃

)(
(R∗)

>
Γ− W̃

)>
]

Then consider the integer approximation R̃∗ to R∗ obtained
by rounding. We define ∆ such that R∗ = R̃+∆ and note that
each element of ∆ cannot have magnitude larger than 1. Then
consider that if W̃ is replaced by αW̃, the optimizing R∗

becomes αR∗ and the integer matrix solution obeys αR∗ =
R̃ + ∆. Applying R̃ to equation (14) produces

e2 = Trace[
(
(R∗ − ∆

α
)>Γ− W̃

)(
(R∗ − ∆

α
)>Γ− W̃

)>
]

Clearly, as α → ∞, e2 → (e∗)2. Thus, larger α produces
better discrete approximation of R∗. As equation (13) is
structurally equivalent to equation (14), the same argument
applies to the integer approximation of Θ∗. Therefore, we
can seek continuous solutions to equation (13) and equation
(14) and then scale the elements of A until the performance of
the integer matrix approximation is sufficiently close to that
of the optimal continuous solution, at least within practical
limits of chemical mixture composition. The choice of the ap
in equation (9) will depend on the coarseness with which the
corresponding r̃p and θ̃p approximate wp.

C. Optimization with Random Γ

For the case of random equilibrium vectors γγp, the opti-
mizations are still convex, as stated in the following lemma:

Lemma 1: (Random Γ) If Γ is random, the optimizations
dR and dθ remain convex, and strictly convex iff the correla-
tion matrix E

[
ΓΓ>

]
= KΓ is positive definite.

Proof: [ Lemma 1] When the equilibrium vectors γγp are
random, the optimizations dR and dθ are replaced with opti-
mizations of E [dR] and E [dθ] respectively. The optimizations
are still convex since ΓΓ> in Theorem 3 is replaced by the
positive semi-definite correlation matrix E

[
ΓΓ>

]
= KΓ so

that equation (16) is still satisfied. If KΓ is positive definite
(full rank) then the optimizations are strictly convex. •

VI. DISCUSSION & CONCLUSION

We have shown how to implement chemical perceptrons us-
ing small molecules composed of reactive groups (R-groups),
and reagents which act differentially (but without impractical
exquisite specificity) upon them. Furthermore, given multiple
reagents with differing R-group reactivity, we can realize

multiple independent perceptrons (one per reagent) assuming
there are no more reagents than R-groups. The number of
possible inputs to our perceptron is combinatorially huge –
our ongoing Ugi synthesis work will produce a library of
≈ 3 × 104 different molecules, implying 230000 − 1 non-
empty mixtures. And even larger libraries (2×106) are possible
[12]. Thus, the number of simultaneous multiply-accumulate
operations (inputs × weights to produce an indicator product)
implemented by reagent addition can also be extremely large
even after selecting only for mixtures which implement a given
set of weights. In addition, since small molecules are used and
operation relies upon the natural promiscuity of liquid phase
chemical reactions, the physical size of these perceptrons is
limited only by the amount of indicator product that can be
reliably detected. Finally, we note that chemical training [13],
[14], layering into larger networks and producing negative
weights while not considered here, are the subjects of ongoing
work.
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